Abstract

The oxygen evolution reaction (OER) at anode requires high overpotential and is still challenging. The metallic core-oxyhydroxide layer structure is an efficient method to lower an overpotential. We synthesized Fe rich FeCo core-Co rich FeCo oxyhydroxide layer with a different particle size of 173 nm, 225 nm, and 387 nm (FeCo 173, 225, 387) through a difference in the reduction rate of Fe/Co precursors using facile modified polyol synthesis. To investigate the effect of conductivity, CoFe2O4 nanoparticles of 80–130 nm were synthesized. Among samples, FeCo 173 showed remarkable catalytic performance of 316 mV at a current density of 10 mA/cm2 in 0.1 M KOH compared to RuO2 (408 mV), FeCo 225 (323 mV), FeCo 387 (334 mV), CoFe2O4 (382 mV). Moreover, FeCo 173 showed good stability for 60,000 s while RuO2 showed a gradual increase in overpotential to maintain 10 mA/cm2 after 15,000 s in chronopotentiometry. The excellent performance was attributed to Fe-rich metallic core, a small amount of Fe doping into CoOOH, and the synergic effect between the active site of Co rich FeCoOOH and conductive Fe rich metallic core. Following this result, it shows that the use of such FeCo electrodes has advantages in the production of hydrogen via electrochemical water oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.