Abstract

A method for preparing rare-earth element-doped yttrium oxide phosphor photonic band gap crystals (PBG) is described, which obviates the necessity for multiple infilling of the opal-like template. The method utilizes (i) the re-dissolving and the concentration of previously precipitated spherical phosphor particles made by homogeneous precipitation methods into a viscous precursor phosphor solution, and (ii) formation of an opal-like template of polystyrene or silica spheres. A procedure is outlined that permits the precursor solution to be drawn into the template in a controlled manner that can be easily monitored using an optical microscope. Attenuation of the strong, red cathodoluminescent emission is observed in Y2O3:Eu3+ phosphor PBG crystals that are engineered to have a stopband overlapping the emission bands in the red region. This attenuation results from Bragg diffraction of the light emitted within the PBG phosphor crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.