Abstract

Mechanically robust optical homogeneous polyimide (PI) films with desirable atomic oxygen (AO) erosion duration were fabricated by initially synthesizing amine-functionalized hyperbranched polysiloxane (NH2-HBPSi), then reinforcing the pristine polyimide skeleton with it via copolycondensation reactions. NH2-HBPSi macromolecule imparts desirable AO survivability to the resulting hybrids. The mass loss per unit area of hybrid films had a downward trend with rising NH2-HBPSi content and AO dose before the complete silica protective layer was formed. It has been proven by the experiments in an underground simulated AO environment. It decreased to 1% of that of pristine polyimide when NH2-HBPSi accounted for 30% of the solid content after 24 h AO attack. The stable thickness uniformity that can meet the Rayleigh criterion was achieved in a 30 wt% HBPSi PI film, mainly due to the selection of the best process parameters. Meanwhile, 30 wt% HBPSi PI demonstrates satisfactory mechanical properties, with a tensile strength of 228.9 MPa and elongation at break of 7.3%. The characterization of scanning electron microscopy confirmed that pristine polyimide was substantially eroded after AO exposure while the surface morphology of 30 wt% HBPSi polyimide showed no evident change. The low AO erosion yield and prominent film thickness uniformity may find extensive usage in ultra-lightweight space diffractive optical elements (DOE) working in low earth orbit (LEO).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.