Abstract
A new, facile and low-sample consuming technique for the determination of hydroxyl values (OHVs) in poly(hydroxyalkanoate)s (PHAs) is herein presented. After a fast, uncatalyzed and non-destructive trifluoroacetylation of all PHA hydroxyl groups, OHVs are calculated through 19F-NMR measurements, comparing integral values of the only two signals in the spectra: the fluorinated hydroxyl groups and the internal standard (trifluorotoluene) signals. Furthermore, the combined ex situ functionalization with a simple workup of the fluorinated polymer allowed to obtain spectra with an improved signal/noise ratio and short acquisition time if compared to 1H-NMR-based methods. The results obtained by 19F-NMR measurements are then validated by the established standard method based on acid/base titration and the 1H-NMR-based method. The proposed approach shows to be valuable not only for low molecular weight PHAs, but also for high molecular weight samples, which typically cannot be analysed by conventional 1H-NMR-based methods due to the very low concentration of hydroxyl terminal groups. Thanks to the observed high reliability, the method was also successfully applied to evaluate the OHVs of various commercial hydroxyl terminated polymers with different molecular weights in order to further show its wide applicability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.