Abstract

Metal oxides with the hollow microstructure by the facile synthetic strategy are hopeful in applications for photocatalysis, supercapacitor, and gas sensor owing to their large surface areas, porosity ratio and rich active sites. In this work, indium oxide porous hollow rods (In2O3 PHRs) are successfully prepared using metal-organic frameworks (MOFs) as the template. The morphology of In2O3 PHRs is hexagonal hollow micro-rods with a porous structure. The investigation on the gas-sensing performance reveals that the In2O3 PHRs sensor displays outstanding sensitivity and selectivity toward 10 ppm chlorine gas (Cl2) at low operational temperature (160 °C). Furthermore, the In2O3 PHRs sensor displays a low detection limit (3.2 ppb) and short response and recovery time (38/13 s). The unique morphology and abundant oxygen vacancies are conduced to the excellent gas-sensing activities, which is benefited from the utilization and decomposition of In-MOFs precursor. In addition, the gas sensing mechanism of reducing gases and oxidizing gases is deduced in detail for the In2O3 PHRs sensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.