Abstract

Carbon-negative strategies such as geologic carbon sequestration in continental flood basalts offers a promising route to the removal of greenhouse gases, such as CO2, via safe and permanent storage as stable carbonates. This potential has been successfully demonstrated at a field scale at the Wallula Basalt Carbon Storage Pilot Project where supercritical CO2 was injected into the Columbia River Basalt Group (CRBG). Here, we analyze recovered post-injection sidewall core cross-sections containing carbonate nodules using μ-XRF chemical mapping techniques that revealed compositional zonation within the nodules. The unique nature of the subsurface anthropogenic carbonates is highlighted by the near absence of Mg in an ankerite-like composition. Furthermore, a comparison between pre- and post-injection sidewall cores along with an in-depth chemical mapping of basalt pore lining cements provides a better understanding into the source and fate of critical cationic species involved in the precipitation of carbon mineralization products. Collectively, these results provide crucial insights into carbonate growth mechanisms under a time-dependent pore fluid composition. As such, these findings will enable parameterization of predictive models for future CO2 sequestration efforts in reactive reservoirs around the world.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.