Abstract

With the exploration of novel sustainable protocol for functional polyamides’ (PAs) construction as the starting point, herein, the small molecular model compound (M1-ssBIC) was prepared firstly by manual grinding of monofunctional benzoxazine (1a) and isocyanide (1b) via solid-state benzoxazine-isocyanide chemistry (ssBIC) to evaluate the feasibility of ssBIC. Linear PAs (P1-series polymers) were subsequently synthesized from biunctional benzoxazine (2a) and isocyanide (2b), and the influence of the loading of catalyst (octylphosphonic acid) (OPA) on the polymerization was investigated. Afterwards, two kinds of cross-linked PAs were successfully constructed via ssBIC by using trifunctional benzoxazine (3a) and cross-linked polybenzoxazine (4a) as reaction substrates, respectively, thus verifying the adaptability of ssBIC. Structural characterization indicates that amide, phenolic hydroxyl and tertiary amine substructures, with metal-complexing capability, have been successfully integrated into the obtained PAs. A type of representative PA/silver composite (P3-AgNPs) was prepared subsequently via in situ reduction treatment, and its application as recyclable reduction catalyst for organic pollutant p-nitrophenol (4-NP) was preliminarily investigated here to provide the example for possible downstream application of ssBIC. We think that this current work could provide a new pathway for the construction of functional PAs through facile and sustainable ssBIC protocol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.