Abstract

This study developed a green and novel magnetic biochar via the co-pyrolysis of firwood biomass pre-treated with 10% (w/w) of either solid-phase (admixing; G10BCA) or liquid-phase (impregnation; G10BCI) goethite mineral (α-FeOOH). Newly fabricated magnetic biochars were characterized by inductively coupled plasma-optical emission spectroscopy (ICP-OES), Brunauer-Emmett-Teller (BET) equipment, X-ray powder diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), proximate and elemental analyzer, and vibrating sample magnetometry. The effects of magnetic precursor, iron loading, and aqua-treatments on recoverability, magnetic property, and stability (resistance to α-FeOOH reconstructive crystallization/dissolution reactions) were explored and compared to those of magnetic biochar derived from conventional ferric chloride precursor (F10BCI). Results confirmed a direct correlation between biochar yields and ash contents with iron loading, irrespective of the used types of magnetic precursors (α-FeOOH or FeCl3). Although FeCl3 can generate magnetic biochar (F10BCI) with higher total carbon content (83.6%) and surface area (299 m2/g), α-FeOOH proved to be more effective at yielding magnetic biochars with nanostructured surfaces, lower water extractable components (thus green; G10BCA = 0.21 mg/mL and G10BCI = 0.16 mg/mL), higher magnetic saturation (G10BCA = 10.0 emu/g and G10BCI = 20.8 emu/g), higher ferromagnetic susceptibility, and excellent recoverability. α-FeOOH was undetected on the surface of G10BCA, post-aqua-treatments (over 30 days), and this demonstrated its stability in the face of demagnetization via α-FeOOH reformation reactions. Consequently, this study demonstrated that the admixing solid-phase α-FeOOH (10%) with firwood biomass offered a green, facile, and efficient way to thermochemically produce magnetic biochar. The produced biochar exhibited a superb stability to α-FeOOH reconstructive crystallization/dissolution reactions in aquatic (aqua) media, green attributes, good magnetic properties, and great potential applications in many areas of the economy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call