Abstract
The self-assembled Bi-based metal–organic framework microspheres (Bi-MOF-M) by nanorods were successfully constructed by the glycol-assisted solvothermal method. Using Bi-MOF-M as a homologous template, a petal-like Bi2MoO6 (BMO) layer was grown in situ on its surface to facilely construct a chemically bonded heterojunction interface, realizing a micro/nano hierarchical flower spherical-like Bi-MOF-M/BMO heterojunction composite photocatalyst. The as-prepared series of Bi-MOF-M/BMO-x catalysts show higher visible light catalytic performance for tetracycline hydrochloride (TC) degradation. Among them, Bi-MOF-M/BMO-0.3 has the optimal catalytic activity, and the degradation efficiency can reach 93.6% within 60 min of light irradiation with superior mineralization ability and structural stability, and the degradation kinetic constant is 6.12 times that of Bi-MOF-M and 5.69 times that of BMO, respectively. The homologously grown Bi-MOF-M/BMO chemically bonded heterojunction not only effectively broadens the spectral absorption range and enhances the absorption intensity but also promotes the efficient separation of photogenerated carriers through forming a favorable interfacial electric field and well-matched energy band alignment. A reasonable mechanism for the visible light degradation of TC by the Bi-MOF-M/BMO composite catalyst with h+ and 1O2 as the main reactive species is proposed. The micro/nano hierarchical structure of the Bi-MOF/BMO catalyst allows it to exhibit the easy recovery advantage of micron-scale materials while maintaining the high catalytic activity of the primary nano-components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.