Abstract

Hydrogen is regarded as a clean and highly efficient renewable energy. The platinum catalytic electrode is widely used in hydrogen evolution reaction (HER), but it has affected its commercial application because of its high cost. Therefore, the study on cost-effective and high-active catalysts toward HER is required to realise large-scale hydrogen production. In this work, we present a novel Pt/NPSSF catalyst prepared by a one-step in-situ deposition of Pt precursor on a nano-porous stainless-steel film (NPSSF) substrate. The prepared catalyst was evaluated in acidic and alkaline conditions for its HER activities. The preliminary results demonstrate that the Pt/NPSSF electrodes have superior catalytic activity for HER. The hydrogen overpotential of Pt/NPSSF is −70mV (RHE) in the alkaline solution, which is lower than the Pt electrode of −184mV. At the same time, we also obtained −71.2 mV of overpotential for the Pt/NPSSF electrode, which is similar to the −73mV of Pt electrode in the acid solution. The Tafel graphs plotted from the LSV curves indicate the different HER mechanism in the alkaline and acid solution. The HER kinetics of the Pt/NPSSF were studied using EIS. Comparing Pt/NPSSF to Pt electrode, the multi-pore structures of NPSSF and the Pt nanoparticles active sites decrease the charge transfer-resistance for the HER process. The facile preparation, high efficiency and low value of the Pt/NPSSF composite electrodes demonstrate the promising applications in HER.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call