Abstract
In recent decades, artificial nanozymes with excellent stability, low cost and availability have been gradually explored to avoid the limits of natural enzymes such as poor stability, high cost and difficult preparation. Herein, for the first time, we investigated the capability of nanoscale Fe3O4@MIL-100(Fe) as a nanozyme, which was quickly synthesized in situ by a microwave-assisted method within 20 min using Fe3O4 as the metal precursor. The obtained Fe3O4@MIL-100(Fe) showed satisfactory intrinsic dual enzyme mimetic activities, including peroxidase (POD)- and catalase (CAT)-like activities. Moreover, a simple and effective colorimetric biosensor was fabricated to detect glutathione (GSH) based on its POD-like activity. The proposed measurement had a linear range of 1–45 μM and a limit of detection (LOD) of 0.26 μM (3.3 δ/S). It was proved that the established colorimetric sensing system could be successfully applied to detect GSH in actual biological samples. Importantly, the outstanding reusability and stability made it extremely valuable as a catalyst. The present work implied that Fe3O4@MIL-100(Fe) synthesized in situ by the microwave-assisted method was a very promising candidate for biocatalyst and biosensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.