Abstract

Nano-ZnO were in situ prepared and permanently embedded in regenerated cellulose (RC) films by chemical precipitation to endow antibacterial of films and simultaneously strengthen tensile strength. ZnCl2 was selected as a promoter of 1-allyl-3-methylimidazolium chloride for cellulose dissolution and as a precursor for nano-ZnO synthesis. Zn2+-absorbed cellulose solution was reacted with NaOH under ultrasonic to obtain nano-ZnO embedded RC films. The results indicated that RC films treated with the longest sonication time, highest regeneration solution basicity, and highest cellulose concentration were demonstrated to be the most effective against S. aureus, which agreed well with the dense and homogeneous distribution of high content of nano-ZnO on the film surface. The nanocomposite films achieved particularly high mechanical strength of 202.0 MPa with improved thermal stability. Strong H-bonding formed between nano-ZnO and cellulose, which contributed to high tensile strength and thermal stability of films. This work affords a simple approach to prepare cellulose nanocomposite with outstanding performance for potential application in packaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call