Abstract

Photogenerated electron/hole recombination greatly limits the catalytic efficiency of TiO2, and recently modification with graphene substance has been regarded as an effective way to enhance the photocatalytic performance of TiO2. When referring to the fabrication of graphene based materials, the reduction process of graphene oxide has been demonstrated to be a key step. Therefore, it is highly required to develop an efficient and simple route for the GO reduction and the formation of TiO2@rGO composites. In this study, we have demonstrated a facile and environmentally friendly strategy for in-situ preparation of the TiO2@rGO “dyade” hybrid and systematically investigated the photodegradation efficiency of the resultant composite by utilizing rhodamine 6G as the model pollutant. The obtained TiO2@rGO has a significant enhancement in photo energy adsorption leading to the effective photocatalytic degradation reactions. The results indicated that the best performance was conducted by the TiO2@rGO (10wt%, 120 min’s irradiation), which exhibited more than triple the higher photodegradation rate than commercial TiO2 (P25) nanoparticles mainly due to two aspects, the rapid separation of h+/e− and to improve adsorption. This work provides new insight into the synthesis of TiO2@rGO composites as a high performance photocatalyst for the degradation of organic contaminant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.