Abstract

HypothesisThe development of enzymatic conjugates with industrial applications require approaches with good scalability and batch-to-batch reproducibility. Hereof, nearly monodisperse iron oxide nanoparticles can be synthesized by thermal decomposition with high yields. A mixture of gallic and polyacrylic acid is used for the direct water transfer and later immobilization of laccase (Trametes versicolor). ExperimentsNanoparticles were synthesized by thermal decomposition (13.1 nm by TEM, 50 nm by DLS) and later transferred to water by a ligand exchange method with polyacrylic acid and a polyacrylic acid/gallic acid mixture. Laccase was immobilized on water dispersions of both nanoparticles via a carbodiimide coupling. FindingsThe nanoparticles exhibited superparamagnetic behavior with insignificant values of iHc. The presence of gallic acid hindered the formation of multiple polyacrylic acid layers, therefore improving the colloidal stability of the nanoparticles (100 nm by DLS) after weeks of storage. Nanoparticles containing only polyacrylic acid showed poor activity (60% loading, 4.5% activity), while nanoparticles with both polyacrylic and gallic acids showed enzymatic activity values 4.4 times higher than the free enzyme (13% loading, 57% activity). The nanoparticles improved the storage stability (8 times) of the enzyme, its thermoresistance (4 times), and its reactivity against azo dyes Camalgite and Congo Red (21 and 27% increase, respectively). In addition to some improved catalytic properties in comparison to similar works, this is the first report of the use of gallic acid for both the direct transfer to water and enzyme immobilization on highly monodisperse, batch-to-batch reproducible superparamagnetic nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.