Abstract

Described herein is a method which combines bond selective fragmentation by photodissociation with online liquid chromatographic separation and mass spectrometric analysis. Photoexcitation of proteins or peptides with 266-nm light does not normally yield abundant fragmentation; however, incorporation of a suitable carbon-sulfur or carbon-halogen bond that is proximal to a chromophore allows access to direct dissociation pathways, resulting in homolytic cleavage of these bonds. Radicals generated through this process can cause further dissociation of the peptide backbone, which is useful for site specifically identifying the point of modification. Two specific applications of this technique for peptide analysis in model systems are presented: (1) identification of reactive metabolites which covalently modify cysteine residues, and (2) characterization of halogenated tyrosine residues which are biomarkers related to oxidative stress. In both cases, these naturally occurring post translational modifications create photocleavable bonds which can be fragmented by 266-nm light. The selectivity offered by photodissociation allows facile identification of the peptides of interest even in complex mixtures, and subsequent selective radical directed backbone fragmentation pinpoints the site of modification. This combination greatly simplifies data analysis and provides more confident assignments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.