Abstract

Polymer nanocomposites have been extensively investigated over the past two decades, resulting in a wide range of applications because of their excellent performance. Halloysite, a type of naturally occurring aluminosilicate, has attracted increasing interest in polymer nanocomposite applications, especially for the enhancement of mechanical properties owing to its tubular structure. Herein, we report a facile approach to achieve a high level of dispersion of halloysite nanotubes (HNTs) in epoxy by treating HNTs with a low concentration of sodium hydroxide (NaOH). The NaOH treatment resulted in the formation of hydroxyl groups on the surface of HNTs, leading to a much higher level of dispersion of HNTs in water, organic polar solvents, and epoxy matrix. The higher density of external silanol groups (Si–OH) of hydroxylated HNTs (h-HNTs) was confirmed by X-ray photoelectron spectroscopy (XPS) characterization. Such a higher level of dispersion and stronger interface led to simultaneous enhancement in both the stiffness and the toughness of epoxy/h-HNT nanocomposites. Systematic characterizations were performed to investigate the related stiffening and toughening mechanism. The implication of the present findings is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call