Abstract
Tin disulfide (SnS2) has been attracted intensive attention in the field of photoelectric conversion due to its appropriate band gap and glorious electronic mobility. The hexagon SnS2 nanosheets has been successfully integrated through a facile one-pot hydrothermal method. SEM images, Raman spectra, atomic force microscope and X-ray diffraction patterns are measured to carry out to investigate the morphologies and microstructures of SnS2 nanosheetsm, confirming a good crystallized SnS2. Then, the photochemical activity of as-prepared SnS2 nanosheets were tested in the electrolyte of Na2SO4. Photoelectrochemical tests demonstrate that the photocurrent density of as-prepared hexagon SnS2 nanosheets (1.66 µA/cm2 at a light intensity of 140 mW/cm2) is hugely increased with increasing light intensity. Furthermore, after 50 cycles, the photocurrent density does not change significantly, indicating that the as-prepared SnS2 nanosheets possesses superior stabilities. The outstanding photocatalytic performances of SnS2 nanosheets are not only resulted from its huge specific surface area, which can harvest more light and provide more active sites, but also attributed to its superior charge mobility, which can facilitate the separation photogenerated electron–hole pairs and the charge transfer between SnS2 nanosheets and the electrode. The most important is that our work reveals the hexagonal SnS2 nanosheets not only possess superior photoelectrochemical properties, but also have great potential applications in energy conversion and photodetector fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.