Abstract
Aqueous zinc-ion batteries (AZIBs) are now vigorously explored as a class of novel and competitive candidates for large-scale energy storage in terms of high safety, eco-friendliness and low cost. In order to realize efficient Zn-storage with desirable cycling stability and rate capability, constructing suitable cathode materials that possess reliable host structure and fast Zn2+ diffusion kinetics makes a lot of sense. Herein, novel V2O5 nanofibers were facilely synthesized via a hydrothermal method and employed as a cathode material for AZIBs. By matching with aqueous Zn(CF3SO3)2 electrolyte, the cathode is able to achieve a specific capacity as high as 264.5 mAh g−1 at 200 mA g−1. Even conducted at a large current density of 2000 mA g−1, a considerable rate capability of 132.6 mAh g−1 can also be delivered. In addition, electrochemical reaction kinetics and ion diffusion mechanism were initially conducted to uncover the insights for efficient Zn-storage. This work is anticipated to offer feasible strategy for the design and fabrication of promising vanadium-based cathode materials for rechargeable AZIBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.