Abstract
Bisphenol A (BPA) is a renowned plasticizer, and a key component of various plastics, resins, and food packaging materials. However, BPA have been identified as an endocrine disruption compound and cause severe consequences such as infertility, diabetic, obesity, carcinoma, and possess high risk of exposure in aquatic ecosystem. To this, we crafted an ultrasensitive electrochemical sensor based on the manganese sulfide nanoparticles (MnS NPs) catalyzed electrochemical oxidation of BPA, and its eventual application in rapid screening of BPA contamination. The physiochemical characteristics and electrocatalytic performance of the MnS nanocatalyst have been well studied and utilized in the fabrication of MnS/GCE based BPA sensor. The fabricated BPA sensor has shown a broad dynamic range (20 nM–2.15 mM), lower detection limits (6.52 nM) and promising towards rapid screening of BPA contaminations in food and environmental samples under mimicked real-world conditions with excellent accuracy and precision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.