Abstract
Synthesis of reduced graphene oxide (rGO), NiO nanoparticle and a novel ternary nanohybrid, NiO@g-C3N4-rGO were performed via eco-friendly green protocol using aqueous extract of a abundantly available marine alga, Ulva sp. The structure, morphology, optical properties and chemical oxidation state of the materials were probed by UV–Vis, FT-IR, XRD, Raman, SEM, EDAX, TEM, XPS, BET and PL techniques. The electronic band gap of NiO NP and NiO@g-C3N4-rGO are found to be 3.54 eV and 2 eV, respectively. The average diameter of NiO NP is 12 nm. The ternary nanohybrid demonstrated superior photocatalytic performance in the degradation of a water soluble congo red dye under scattered sunlight irradiation. The photocatalytic efficiency of the nanohybrid is ascribed to suppressed electron-hole pair recombination. The rate of dye degradation got significantly enhanced with increase in the catalyst loading while higher amount of dye lowered the rate. Radical trapping experiments indicated O2.- to be the active species in photodegradation. The hybrid material could be recovered, reused for five consecutive catalytic cycles and beyond without loss of efficiency indicating high stability of the photocatalyst.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.