Abstract

The nanocrystalline bismuth oxide (Bi2O3) was produced utilizing a green combustion process with Mexican Mint gel as the fuel. The powder X-ray diffraction (PXRD) method proved the nanocrystalline nature and Bi2O3 nanoparticles (BONPs) in α phase and the average crystalline size of BONPs nanoparticles has been found to be 60 nm. The spherical-shaped structure with bright dot-like spots in the center of the selected area diffraction (SAED) is confirmed by the scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDAX) in conjunction with the transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) demonstrating the crystalline behavior of green NPs. The Kubelka-Monk function was used to analyze diffuse reflectance spectra, and the results revealed that BONPs have a band gap of 3.07 eV. When utilized to evaluate the photocatalytic capabilities of NPs, the direct green (DG) and fast orange red (F-OR) dyes were found to be activated at 618 and 503 nm, respectively. After 120 min of exposure to UV radiation, the DG and F-OR dyes’ photodegradation rate reduced its hue by up to 88.2% and 94%, respectively. Cyclic voltammetry (CV) and electrochemical impedance techniques in 0.1 N HCl were used to efficiently analyze the electrochemical behavior of the produced BONPs. A carbon paste electrode that had been enhanced with BONPs was used to detect the glucose and uric acid in a 0.1 N HCl solution. The results of the cyclic voltammetry point to the excellent electrochemical qualities of BONPs. Bi2O3 electrode material was found to have a proton diffusion coefficient of 1.039 × 10−5 cm2s−1. BONP exhibits significant potential as an electrode material for sensing chemicals like glucose and uric acid, according to the electrochemical behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call