Abstract

Cubic ZrO2: Fe3+ (0.5–4mol%) nanoparticles (NPs) were synthesized via bio-inspired, inexpensive and simple route using Phyllanthus acidus as fuel. PXRD, SEM, TEM, FTIR, UV absorption and PL studies were performed to ascertain the formation of NPs. Rietveld analysis confirmed the formation of cubic structure. The influence of Fe3+ on the structure, morphology, UV absorption, PL emission and photocatalytic activity of NPs were investigated. The CIE chromaticity coordinates (0.36, 0.41) show that NPs could be a promising candidate for white LEDs. The influence of Fe3+ on ZrO2 matrix for photocatalytic degradation of AO7 was evaluated under UVA and Sunlight irradiation. The enhanced photocatalytic activity of spherical shaped ZrO2: Fe3+ (2mol%) under UVA light was attributed to dopant concentration, crystallite size, narrow band gap, textural properties and capability for reducing the electron–hole pair recombination. The trend of inhibitory effect in the presence of different radical scavengers were followed the order SO42−>Cl−>C2H5OH>HCO3−>CO32−. The recycling catalytic ability of the ZrO2: Fe3+ (2mol%) was also evaluated with a negligible decrease in the degradation efficiency even after the sixth successive run.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.