Abstract

The described method enables facile gram‐scale preparation of CuFeS2 nanocrystals exhibiting interesting thermoelectric properties from simple and readily available precursors. Exchange of primary organic ligands for inorganic ones using either (NH4)2S or triethyloxonium tetrafuoroborate (Meerwein's salt) resulted in nanocrystals from which n‐type bulk thermoelectric materials were obtained through sintering under pressure. The measured physical properties of the fabricated bulk thermoelectric materials depend on the type of inorganic ligands used for the exchange. In particular, materials that were surface‐modified with Meerwein's salt have a higher Seebeck coefficient (|S| = 238 µV K–1) as compared to those modified with (NH4)2S, whereas the latter exhibit higher electrical conductivity (8500 S m–1) and lower thermal conductivity (0.5 W m–1 K–1), both of which are favorable for thermoelectric applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.