Abstract
A facile sol–gel method has been developed to create a superhydrophobic surface on aluminum substrate with tetraethylorthosilicate (TEOS) and vinyltriethoxysilane (VTES) as co-precursor at room temperature. Firstly, nanometer sized silica particles were self assembled on the substrate through the hydrolysis of TEOS. Then, the silica particles were modified with vinylsiloxane through the hydrolysis and condensation polymerization of VTES. The emphasis was focused on investigating the influence of the molar ratio between NH3·H2O and ethanol on the surface morphology and wetting property. The surface morphology was observed by scanning electron microscopy (SEM), the chemical composition and bonding state of the surface were explored by energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectra (XPS), and the wetting property of the surface was investigated by water contact angle measurement (WCA). The modified silica-based surface possessed the greatest static contact angle of 154.9°, exhibiting excellent superhydrophobic property. A hierarchical microstructure with spherical microparticles of around 2μm decorated with nanoparticles of around 450nm was observed on the film surface. The surface was covered by hydrophobic vinyl groups via the decoration of silica microparticles with vinyl-terminated siloxane nanoparticles as evidenced by EDS, FTIR and XPS. The corrosion resistant performance and durability of the superhydrophobic silica-based surface formed on aluminum substrate in corrosive NaCl solution were estimated by electrochemical impedance spectroscopy (EIS) measurements. The appropriate equivalent circuit model was put forward to fit and analyze the EIS data. The electrochemical result revealed that the corrosion resistant performance of aluminum was improved greatly by the superhydrophobic treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.