Abstract

The reactions of the singlet methylene (1a) and dimethylcarbene (1b), with their diazirine precursors, diazirine (2a), and dimethyldiazirine (2b), have been studied theoretically using ab initio and density functional theory. The reaction has no activation barriers for the parent system (1a + 2a) and proceeds via a reactive complex and a transition state with a small negative enthalpy of activation Δ Hnot =298 = -1.1 kcal mol-1, ΔSnot =298 = -34.4 cal mol-1 K-1, ΔG°298 = 9.2 kcal mol-1) for the dimethyl derivatives (1b + 2b). The formation of N-methylene diazirinium ylides (3a,b) is exothermic by 64-80 kcal mol-1. The isomer, 1,3-diazabicyclo[1.1.0]butane (4a), is more stable (5-12 kcal mol-1) than isomer 3a, but can neither be formed by direct thermal reaction of 1a with 2a nor undergo the direct rearrangement into formaldazine (5a). The rearrangement of ylides 3a,b into azines 5a,b proceeds by conrotatory C3-N1 ring opening. The predicted activation barrier of ca. 15 kcal mol-1 for the ring opening in ylide 3b is in excellent agreement with experimental data. The formation of pyridinium ylides from carbenes and pyridine is also studied.Key words: diazirinium ylide, ab initio MO (molecular orbital) theory, density functional theory, pyridinium ylide, CIS (singles configuration interaction) transition energies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call