Abstract

The demand for hip arthroplasties and other joint replacement orthopedic surgeries is on the rise. Combined with the emergence of antibiotic drug resistant strains of pathogenic bacteria, there is an increasing need for the development of bacterial antifouling surface treatment technologies which can be applied to titanium alloy medical devices. Herein is reported the development of a durable, fluorine-free superhydrophobic surface treatment for Ti6Al4V, fabricated through facile means without the use of HF or fluoropolymers, utilizing safe reagents under mild reaction conditions. Nanoscale texturing was created with an alkaline hydrothermal process. An alkyl surface chemistry was imparted via the deposition of an alkyl self-assembled monolayer to achieve superhydrophobic, non-wetting behavior. This superhydrophobic surface is capable of imposing 1.55 ± 0.13 and 1.72 ± 0.23 log10 reductions in the adherent populations of Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Pseudomonas aeruginosa (P. aeruginosa) bacteria, respectively. This represents a safe route to a significant potential mitigation in the costs and dangers arising from medical device associated infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call