Abstract
Developing a facile, cost-saving, and environment-friendly method for fabricating a multifunctional humidity sensor is of great significance to expand its practical applications. However, most humidity sensors involve a complex fabrication process, resulting in their high cost and narrow application fields. Herein, a multifunctional paper-based humidity sensor with many advantages is proposed. This humidity sensor is fabricated using conventional printing paper and flexible conductive adhesive tape by a facile pasting method, in which the paper is used as both the humidity-sensing material and the substrate of the sensor. Owing to the moderate hydrophilicity of the paper and the rational structure design of the paper-based humidity sensor, the sensor exhibits an excellent humidity-sensing response of more than 103 as well as good linearity ( R2 = 0.9549) within the humidity range from 41.1 to 91.5% relative humidity. Furthermore, the paper-based humidity sensor has good flexibility and compatibility, endowing it with multifunctional applications for breath rate, baby diaper wetting, noncontact switch, skin humidity, and spatial localization monitoring. Although the resistance of the paper-based humidity sensor is relatively large, the humidity-sensing response signals of the sensor can be conveniently processed by the designed signal processing system. The readily available starting materials and facile fabrication technique provide useful strategies for the development of multifunctional humidity sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.