Abstract

Aerogels that derived from biomass have long been attractive as absorbents for oil clean-up. However, it remains a significant challenge to prepare fully bio-based oil absorbents that combines fast oil/water separation capacity, adequate mechanical robustness and easy recyclability through green and facile strategy. Inspired by the fascinating structure of wood, here we report a highly porous and anisotropic bio-based aerogel by taking advantage of the directional freezing technology, followed by a freeze-drying and silylation process. Due to the directional growth of ice crystals along the vertical direction, a special spring like morphology was obtained, which is mainly composed of well aligned low-tortuosity channels that seamlessly connected to bottom layer. Superior mechanical properties that allow for high mechanical compressing and fast elastic recovery were consequently acquired. Moreover, the silylated CS aerogel displays a rather high oil absorption capacity of 63 g g−1, together with excellent recyclability via simple hand squeezing. By virtue of such hierarchical morphology, a device that could continuously separate oil from water was successfully designed. Given the natural abundance of raw material as well as the easy processability, this work would lay solid foundation for further fabrication of bio-based oil absorbents toward low-cost, high-performance and large-scale commodities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call