Abstract

In this paper, a new Bi2O3 based photocatalyst doped with varying concentration of Nb and Mn metal ion was fabricated by conventional heat treatment method and their photocatalytic activity was investigated. The prepared material was characterized by X-ray diffraction (XRD), UV–Visible Spectroscopy, Fourier transform infrared (FTIR) and Scanning Electron Microscopic (SEM) techniques. The XRD analysis of synthesized photocatalyst was found to exhibit characteristic peaks of well crystallized monoclinic α−Bi2O3. The XRD pattern of pure and metal doped Bi2O3 were found to more or less similar. The crystallite size of doped materials were smaller than pure Bi2O3 and size decreases with increasing dopant concentration from 0.5 to 2.0% for Nb & 1.0–3.0% for Mn and remains almost constant at higher dopant concentration. The SEM analysis clearly indicate the formation of nanorod like morphologies. The UV–Vis absorption spectra of synthesized nanorods revealed that the absorption edge shift towards longer wavelength on doping with Nb and Mn metal ions which is beneficial for absorbing more visible light in the solar spectrum. The prepared doped Bi2O3 nanorod showed the excellent photocatalytic activity for degradation of selected organic pollutants, such as Methylene Blue (MB) and Rodaamime B (RhB) under visible light source. The higher activity of doped Bi2O3 nanorod may be attributed to absorption of more visible light leading to generation of higher photogenerated electron hole pairs and efficient separation of photoinduced charge carrier to inhibit the recombination rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call