Abstract
Three-dimensional (3D) interconnected porous architectures are expected to perform well in photoelectrochemical (PEC) water splitting due to their high specific surface area as well as favourable porous properties and interconnections. In this work, we demonstrated the facile fabrication of 3D interconnected nanoporous N-doped TiO2 (N-TiO2 network) by annealing the anodized 3D interconnected nanoporous TiO2 (TiO2 network) in ammonia atmosphere. The obtained N-TiO2 network exhibited broadened light absorption, and abundant, interconnected pores for improving charge separation, which was supported by the reduced charge transfer resistance. With these merits, a remarkably high photocurrent density at 1.23V vs. reversible hydrogen electrode (RHE) was realized for the N-TiO2 network without any co-catalysts or sacrificial reagents, and the photostability can be assured after long term illumination. In view of its simplicity and efficiency, this structure promises for perspective PEC applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.