Abstract

Novel core–shell-structured Pluronic-based nanocapsules with thermally responsive properties were successfully prepared using a modified emulsification/solvent evaporation method. The nanocapsules were constructed through the cross-linking reaction between p-nitrophenyl-activated Pluronic F127 and hyaluronic acid (HA) (named Pluronic F127/HA) or poly(e-lysine) (PL) (named Pluronic F127/PL) at the organic/aqueous interface. The formation, size, and thermal responsiveness of the nanocapsules were characterized by 1H NMR, transmission electron microscopy (TEM) and dynamic light scattering (DLS). The resultant shell-cross-linked nanocapsules exhibit a larger volume transformation (26 times change in volume for Pluronic F127/HA and 31 times for Pluronic F127/PL) over a temperature range of 4–37 °C because of the temperature-dependent dehydration of cross-linked Pluronic F127 polymer chains. The nanocapsules are about 72 ± 4 nm (polydispersity index [PDI] = 0.08) for Pluronic F127/PL (69 ± 5 nm, PDI = 0.10 for Pluronic F127/HA) at 37 °C with narrow size distribution and expand to about 226 ± 23 nm (PDI = 0.34) for Pluronic F127/PL (206 ± 20 nm, PDI = 0.3) for Pluronic F127/HA at 4 °C with broad size distribution in aqueous solutions. The nanocapsules were used to encapsulate and control the release of doxorubicin hydrochloride (DOX·HCl) in aqueous solution. DOX·HCl was physically encapsulated in the nanocapsules using a soaking–freeze-drying–heating procedure. The release curve and release kinetics disclosed that the thermally responsive hollow nanocapsules are good carries for drug delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.