Abstract

Shape memory materials are a type of smart material with potential applications in sensors, textiles, aerospace engineering and medical devices. In this study, we prepared Eucommia rubber and high density polyethylene (HDPE) composites with co-continuous architecture by a simple physical blending method. The shape memory composites memorized two temporary shapes using different melting points of natural Eucommia rubber and HDPE with the addition of dicumyl peroxide (DCP). The architecture of Eucommia rubber/HDPE composites is critical to the materials' properties: each component forms a three-dimensional percolating network and good properties of the two components may be synergically combined. Our results showed that the memory behavior of the composites was dependent on the degree of crystallinity in the composites. When the DCP was 1 phr, the physical and mechanical properties of the Eucommia rubber/HDPE composites improved and exhibited excellent shape memory behavior, with better values of the shape fixity ratio than of the shape recovery ratio. When DCP was 6 phr, the crystalline phase of Eucommia rubber in the composites was almost completely destroyed, which resulted in one temporary shape memory behavior of the composites. © 2016 Society of Chemical Industry

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call