Abstract

The fabrication of reusable natural polysaccharide sponges with nanoscale dispersed photocatalysts to achieve robust photocatalytic efficiency is desirable yet challenging. Herein, inspired by the nesting behavior when fishing, we designed reusable starch sponge with chemically anchored nano-ZnO into carboxylated starch matrix by thermoplastic interfacial reactions and solvent replacement for absorbing and photodegrading methylene blue (MB) in situ. The plasticization and interfacial reactions promoted a simultaneous increase in the reactivity of the starch hydroxyl/carboxyl groups and the specific surface area of ZnO. Meanwhile, the crosslinked networks of starch sponge could be adjusted by varying the ZnO and carboxylic groups contents. The results of photodegradation experiments revealed the recyclable closed-loop process of attraction-trapping-photodegradation of MB was successfully realized, achieving the effect of killing three birds with one stone. The reusable starch sponge with homogeneous dispersion of nano-ZnO by constructing three-dimensional porous channels possessed the high enrichment capacity and the remarkable photocatalysis efficiency with 150 mg/L ZnO. Under UV irradiation, the starch sponge degraded 97 % of MB with 1.67 × 10−3 min−1 photodegradation rate constant even after five cycles, which exceeded most existing photocatalytic systems. Overall, the reusable starch sponge with adjustable structure provided new insights for multifunctional bio-based photocatalyst loading systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.