Abstract

Current reverse osmosis membrane still suffers from permeability/selectivity trade-off, chlorine attack and fouling. To address these problems, a new interlayer-assisted interfacial polymerization (i.e., polyethyleneimine (PEI) interlayer) in the presence of graphene oxide (GO) at various loading was adopted in this work. Their effects on membrane properties and performances were systematically investigated. Results showed that the PEI-interlayered thin film composite (iTFC) membrane exhibited higher pure water permeance (PWP) (1.76 L/m2·h·bar) and NaCl rejection (97.69%) compared to the conventional TFC (cTFC) membrane (1.34 L/m2·h·bar; 96.91%), assigning to the thin and compact PA formed. Performance of iTFC membrane was further enhanced upon inclusion of 0.01 wt/v% GO, producing PEI-interlayered thin film nanocomposite (iTFN-10) membrane with greater PWP (2.66 L/m2·h·bar) without compensating rejection. This was ascribed to the enhanced surface roughness, hydrophilicity and nanochannels created by GO within the PA. The antifouling property of iTFN-10 membrane was comparable with commercial TFC but better than iTFC membrane. Unlike iTFC membrane, the NaCl rejection of iTFN-10 membrane was least deteriorated after chlorination. This membrane also demonstrated better antibacterial properties (E. coli: 44.26% and S. aureus: 77.55%) than commercial membrane (E. coli: 24.68% and S. aureus: 48.98%) due to the presence of amine groups on membrane surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.