Abstract

A facile impregnation method under mild condition is designed for synthesis of highly dispersed Pt nanoparticles with a narrow size of 4–7 nm on nitrogen-doped carbon nanotubes (CNx). CNx do not need any pre-surface modification due to the inherent chemical activity. The structure and nature of Pt/CNx were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive spectroscopy spectrum. All the experimental results revealed that the large amount of doped nitrogen atoms in CNx was virtually effective for capturing the Pt(IV) ions. The improved surface nitrogen functionalities and hydrophilicity contributed to the good dispersion and immobilization of Pt nanoparticles on the CNx surface. The Pt/CNx served as active and reusable catalysts in the hydrogenation of allyl alcohol. This could be attributed to high dispersion of Pt nanoparticles and stronger interaction between Pt and the supports, which prevented the Pt nanoparticles from aggregating into less active Pt black and from leaching as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.