Abstract
Inspired by biomineralization, design and preparation of biomimetic organic–inorganic composites have become a hot issue and a research frontier in many areas, including enzyme engineering. In this research, a unique and facile method for fabricating organic–inorganic hybrid beads is proposed. Modified alginate with a dual function of gelation and mineralization was synthesized for fabrication of hybrid carriers for enzyme immobilization. With the aid of EDC/NHS conjugation chemistry, the amine groups from diethylene triamine were grafted onto alginate in a controllable way. The resultant aminated alginate served manifold functions: forming a hydrogel via Ca2+-cross-linking, inducing the biomimetic silicification and manipulating the distribution of silica nanoparticles. Owing to the compact polymer network structure and the homogeneous silica nanoparticle dispersion, the as-prepared NH2-alginate/silica hybrid beads displayed superior swelling resistance and mechanical stability to pure alginate beads. The hybrid beads were subsequently utilized for encapsulation of yeast alcohol dehydrogenase (YADH). It was found that the thermal stability, pH tolerance and storage stability of the immobilized enzyme were all improved without significantly lowering the catalytic activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.