Abstract

Herein, Fe3O4–SnO2 nanoheterojunction has been synthesized and successfully encapsulated in gC3N4 matrix using a novel hydrothermal technique. The synthesized material was characterized using sophisticated analytical methods like XRD, TEM, BET, UV–Vis, VSM and XPS to evaluate structural, morphological, optical, magnetic and surface chemical properties. The hybrid nanostructure Fe3O4-SnO2-gC3N4 has been utilized for the LED light-induced photocatalytic degradation of carbofuran. The catalyst exhibited notable photocatalytic performance under visible light with an efficiency of ~89% and pseudo first order rate constant of 0.015 min−1. The result of change in variables like catalyst dose, pollutant concentration, pH and contact time on the photodegradation efficiency and degradation kinetics was studied. The incorporation of Fe3O4 improved the magnetic separation of the catalyst after several cycles of operation, thereby improving the practical utility of the catalyst system to tackle organic pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call