Abstract

At present, the magnetic metal/carbon composites have been widely explored for microwave absorption (MA), which effectively integrate the characteristics of magnetic and dielectric materials. As a typical material, metal–organic framework (MOF) shows tremendous potential as a precursor or template. However, its development is limited by the inferior impedance matching. Herein, a novel rod-like Fe/Fe3O4/FeN/N-doped carbon (FON/NC) composite was synthesized via dual-ligand strategy and following calcination. The outer polypyrrole (PPy) shell, obtained by a facile polymerization method, effectively optimized the impedance matching and observably enhanced the MA capacity. Both the multi-component loss mechanism and unique porous core–shell structures of MOF-derived composites were beneficial for microwave attenuation. The effects of filler loadings (20 wt%, 25 wt%, 30 wt% and 35 wt%) on electromagnetic (EM) properties of FON/NC@PPy composites were discussed. Remarkably, as-obtained composites exhibited a minimum reflection loss (RL) value of −60.08 dB at the layer thickness of merely 1.44 mm and the widest effective absorption bandwidth (EAB, RL ≤ −10 dB) of 5.06 GHz at 1.64 mm with 30 wt% filler loading. This work provides a great reference for designing MOF-derived absorbers with high MA performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.