Abstract
In this paper, a novel thermal condensation method was developed for preparing mesoporous g-C3N4/TiO2 composite by using PAA-Ti/TiO2 and melamine as co-precursors. This method can not only ensure the incorporation of TiO2 nanoparticles into g-C3N4 matrix but also lead to the formation of mesoporous structures. In the heating process, polyacrylate (PAA) in the PAA-Ti/TiO2 composites can volatilize to produce carbonous gases and its volatilization temperature falls into the temperature range for melamine condensation, which makes PAA-Ti/TiO2 a suitable pore-forming agent for fabricating mesoporous g-C3N4/TiO2. The largest surface area for the fabricated mesoporous g-C3N4/TiO2 was found to be 268m2g−1, which was approximately 7 or 12 times higher than that of TiO2 or g-C3N4. The mesoporous g-C3N4/TiO2 composite exhibited excellent reproducibility and good performance in the photocatalytic decomposition of dinitro butyl phenol (DNBP) under visible-light illumination. The enhanced photocatalytic efficiency can be attributed to the synergetic effects of large surface area and the formation of heterojunction interface between g-C3N4 and TiO2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.