Abstract

Metal oxides with nanoarray structures have been demonstrated to be prospective materials for the design of gas sensors with high sensitivity. In this work, the WO3 nanoneedle array structures were synthesized by a one-step hydrothermal method and subsequent calcination. It was demonstrated that the calcination of the sample at 400 °C facilitated the construction of lilac-like multiple self-supporting WO3 arrays, with appropriate c/h-WO3 heterophase junction and highly oriented nanoneedles. Sensors with this structure exhibited the highest sensitivity (2305) to 100 ppm ethylene glycol at 160 °C and outstanding selectivity. The enhanced ethylene glycol gas sensing can be attributed to the abundant transport channels and active sites provided by this unique structure. In addition, the more oxygen adsorption caused by the heterophase junction and the aggregation of reaction medium induced by tip effect are both in favor of the improvement on the gas sensing performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.