Abstract

Direct synthesis of graphene with well-defined nanoscale pores over large areas can transform the fabrication of nanoporous atomically thin membranes (NATMs) and greatly enhance their potential for practical applications. However, scalable bottom-up synthesis of continuous sheets of nanoporous graphene that maintain integrity over large areas has not been demonstrated. Here, it is shown that a simple reduction in temperature during chemical vapor deposition (CVD) on Cu induces in-situ formation of nanoscale defects (≤2-3 nm) in the graphene lattice, enabling direct and scalable synthesis of nanoporous monolayer graphene. By solution-casting of hierarchically porous polyether sulfone supports on the as-grown nanoporous CVD graphene, large-area (>5 cm2 ) NATMs for dialysis applications are demonstrated. The synthesized NATMs show size-selective diffusive transport and effective separation of small molecules and salts from a model protein, with ≈2-100× increase in permeance along with selectivity better than or comparable to state-of-the-art commercially available polymeric dialysis membranes. The membranes constitute the largest fully functional NATMs fabricated via bottom-up nanopore formation, and can be easily scaled up to larger sizes permitted by CVD synthesis. The results highlight synergistic benefits in blending traditional membrane casting with bottom-up pore creation during graphene CVD for advancing NATMs toward practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call