Abstract

In this study, we report a facile approach to fabricate functionalized poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibrous membranes as immobilized metal affinity membranes for selective protein separation. Hydrophilic PVA-co-PE nanofibrous membranes with controlled fiber sizes were prepared via a melt extrusion process. A chelating group, iminodiacetic acid (IDA), was covalently attached to cyanuric acid activated membrane surfaces to form coordinative complexes with metal ions. The prepared membranes were applied to recover a model protein, lysozyme, under various conditions, and a high lysozyme adsorption capacity of 199 mg/g membrane was found under the defined optimum conditions. Smaller fiber size with a higher immobilized metal ion density on membrane surfaces showed greater lysozyme adsorption capacity. The lysozyme adsorption capacity remained consistent during five repeated cycles of adsorption-elution operations, and up to 95% of adsorbed lysozyme was efficiently eluted by using a phosphate buffer containing 0.5 M NaCl and 0.5 M imidazole as an elution media. The successful separation of lysozyme with high purity from fresh chicken egg white was achieved by using the present affinity membrane. These remarkable features, such as high capacity and selectivity, easy regeneration, as well as reliable reusability, demonstrated the great potential of the metal-chelate affinity complex immobilized nanofibrous membranes for selective protein separation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call