Abstract

H2O2 sensor is widely used in biomedicine, environmental governance and food processing. However, it is limited by the complex preparation processes and high cost of raw materials. In this work, we develop a facile, simple and cost-effective method to fabricate H2O2 sensor based on a screen-printed electrode via in-situ growth method. The copper was first electrodeposited on the working electrode of screen-printed electrode (SPE) as a sacrificial layer, subsequently, the SPE was immersed in horseradish peroxidase (HRP) containing phosphate buffer saline (PBS). The Cu ions formed by oxidation of the copper layer combined with HRP and phosphate ions to construct HRP-Cu3(PO4)2 hybrid nanoflowers on its surface. The fabrication process is straightforward, without complex reaction conditions and dangerous drugs, which is conducive to mass production. This sensor showed a good linear response to H2O2 with a detection limit of 1.8 μM and a sensitivity of 263.3 μA∙mM−1∙cm−2. Additionally, it possessed excellent selectivity and long-time stability. The performance of this sensor was investigated in various beverages such as milk, beer, and juice, showing reliable detection of H2O2 which highlights the potential practical applications of the sensor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call