Abstract
In this work, we report a novel and facile route for the large-scale fabrication of hierarchically porous NiO microspheres, which involves the thermal decomposition of β-Ni(OH)2 precursor at 450 °C in air for 2 h. The superstructures exhibit high specific surface area, large porous volume, and broad pore size distribution. The electrochemical properties of the hierarchically porous NiO microspheres were examined by cyclic voltammetry and galvanostatic charge/discharge studies. The results demonstrate that the hierarchically porous NiO microspheres are promising anode materials with enhanced lithium storage capacity and excellent cycling stability. The hierarchically porous NiO microspheres can retain a reversible capacity of 612 mA h g−1 after 50 cycles at a current density of 100 mA g−1. The improved electrochemical performance is attributed to their hierarchical structure and large amounts of mesopores within the nanosheets, which can effectively improve structural stability, reduce the diffusion length for lithium ions and electrons, and buffer volume expansion during the charge/discharge processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.