Abstract

We report the fabrication of hierarchically microstructured flower-like ZnO by a facile and single-step procedure involving poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA) assisted aqueous chemical method. The shapes and sizes can be controlled just by varying the concentrations of the water-soluble polymer. When a suitable PAMPAS concentration was utilized, uniform well-defined and mono-dispersed chrysanthemum-like ZnO microstructures based on nanorod building blocks were obtained. The formation mechanism of the hierarchical structure was presented. The structured studies using XRD, HRTEM and SAED reveal these ZnO nanorods are composed of a single phase nature with wurtzite structure and grow along with the c-axis. FTIR spectrum indicated the incorporation of a trace of PAMPSA into ZnO crystals. HRTEM, Raman and XPS analyses showed that the hierarchical ZnO microstructures contain high concentration of oxygen vacancies which enable them exhibiting a significant intense deep-level emission centered at green luminescence in its photoluminescence spectra. They also show enhanced photocatalytic efficiency in degradation of methylene blue. It is hoped that the present work may provide a simple method to fabricate ZnO hierarchical microstructures and a positive relationship among polar plane, oxygen vacancy and green emission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call