Abstract

This study proposes an effective fabrication method for creating a hierarchical micro/nano structured aluminum alloy surface to enhance its hydrophobicity through single point diamond cutting using magnetophoresis. Magnetophoresis is a technique that manipulates metallic particles in metallic fluids using magnetic fields, and this study applies it to single-point diamond cutting by incorporating permanent magnets into the machining setup. The main grooves are cut to create a nano-grooved pattern on the first layer of the surface, while secondary grooves are cut on top of the first layer to form a micro pattern on the surface for two samples, one with and one without magnetophoresis. For magnetophoresis-fabricated samples, the first and second layers are cut in the presence of a magnetic field that is oriented perpendicular to the cutting direction of the first layer. Atomic force microscopy and an optical surface profiler reveal that the metallic marks appear on the surfaces that are parallel to the applied magnetic field for the magnetophoresis sample, which have been integrated with nano grooves to form a nano-textured surface on top of the microstructures. The sample fabricated under the influence of a magnetic field with magnetophoresis exhibits improved surface hydrophobicity, quality, and durability. This study highlights that magnetophoresis has the potential to fabricate metallic hydrophobic surfaces more efficiently than traditional methods for hierarchical micro/nano structured metallic surfaces, given that it does not necessitate the use of complex machining systems or advanced equipment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.