Abstract

Utilizing the abundant elements on earth to product inexpensive, high-active and stable catalysts for water splitting is very significant but still remains serious challenge to produce hydrogen. Herein, heterostructures of CuS/MnCO3 on nickel foam substrate are firstly successfully synthesized via a facile one-step hydrothermal strategy. The as-prepared electrocatalyst displays an enhanced oxygen evolution reaction (OER) performance in alkaline conditions with a minimum overpotential of 70 mV and a small Tafel slope of 42.5 mV/dec to achieve 10 mA cm−2. The catalyst also exhibits an excellent HER activity with a low overpotential of 143 mV and the Tafel slope of 51.4 mV/dec to acquire 10 mA cm−2 in 1.0 M KOH. Moreover, when the CuS/MnCO3//CuS/MnCO3 electrode is applied for the overall water splitting, the electrolyzer cell device affords 10 mA cm−2 at a relative low voltage of 1.43 V, which is one of the best catalysts ever reported. In stability test, its activity first decreases and then remains stable in 1 M KOH solution for about 10 h, indicating that the electrode has good electrochemical stability. Density functional theory calculations (DFT) show that MnCO3 has a stronger adsorption energy for water than CuS does, indicating that MnCO3 is a real active center and CuS plays a certain synergistic effect. This work not only provides a low-cost and efficient bifunctional catalyst for water splitting technology, but also extends the application of bifunctional catalyst based on transition metal sulfide and carbonate compound.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call