Abstract

Omniphobic coatings which can efficiently diminish the interfacial reactions between the underlying substrates and foreign liquids present broad technological impacts and enormous potential applications, whereas the current prepared superamphiphobic surfaces are constrained to their weak robustness owing to the vulnerability of the sophisticated hierarchical structures. Herein, we employed oxidative polymerization method to graft polyaniline (PANI) nanofibers on arbitrarily shaped surfaces that further modified with perfluoroalkylthiol and infiltrated with perfluoropolyether lubricant, constructing a slippery lubricant-infused porous surfaces (SLIPS). With the enlargement of the polymerization time, the coverage degree of PANI coating on the glass surface gradually increased and their transmittance reduced simultaneously. Meanwhile, the influences of the structure geometry and surface chemistry on the slippery behavior of foreign liquids on the SLIPS were investigated, further verifying that the synergetic effect of the adequate texture roughness and matched surface chemistry is the prerequisite for preparing steady and defect-free lubricant layer. Moreover, the prepared SLIPS could be applied in various promising applications such as anti-fogging, anti-fingerprint, three-dimensional droplet manipulation and crude-oil lossless transportation. More importantly, the lubricant layer remained stable on the surfaces after long-term storage in high/low temperature, water immersion and ultraviolet irradiation, and displayed superior mechanical resistance to water impact, sandpaper abrasions and knife scratches. Therefore, this strategy for fabricating nepenthes-inspired lubricant-infused surfaces is expected to further promote the cognition and manufacture of multifunctional omniphobic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.