Abstract

In the study of glycoproteomics with mass spectrometry, certain pretreatments of samples are required for eliminating the interference of nonglycopeptides and improving the efficiency of glycopeptides detection. Although hydrophilic interaction chromatography (HILIC) has been developed for enrichment of glycosylated peptides, a plethora of hydrophilic materials always suffered from large steric hindrance, great cost, and difficulty with modifications of high-density hydrophilic groups. In this work, a 1 mm thick biomimetic honeycomb chitosan membrane (BHCM) with honeycomb-like accessible macropores was directly prepared by the freeze-casting method as an adsorbent for HILIC. The N-glycopeptides from trypsin digests of immunoglobulin G (IgG), mixture of IgG and bovine serum albumin (BSA), and serum proteins were enriched using this material and compared with a commercial material ZIC-HILIC. The biomimetic membrane could identify as many as 32 N-glycopeptides from the IgG digest, exhibiting high sensitivity (about 50 fmol) and a wide scope for glycopeptide enrichment. A molar ratio of IgG trypsin digest to bovine serum albumin trypsin digest as low as 1/500 verified the outstanding specificity and efficiency for glycopeptide enrichment. In addition, 270 unique N-glycosylation sites of 400 unique glycopeptides from 146 glycosylated proteins were identified from the triplicate analysis of 2 μL human serum. Furthermore, 48 unique O-glycosylation sites of 278 unique O-glycopeptides were identified from the triplicate analysis of 30 μg deglycosylated fetuin digest. These results indicated that the chitosan-based membrane prepared in this work had great potential for pretreatment of samples in glycoproteomics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.