Abstract

The Cu surface with a dual-scale roughness has been prepared via a facile solution-phase etching route by the H2O2/HCl etchants. The selective etching of the high-energy {110} facets occurs at an ultralow rate of the redox etching reaction. The resultant surface is composed of many polyhedral microprotrusions and nanomastoids on the microprotrusions, exhibiting the binary micro/nanostructures. After hydrophobization, the resultant surface exhibits a water contact angle of 170° and a sliding angle of ∼2.8° for a 5 μL droplet. The combination of the dual-scale roughness and the low surface energy of the adsorbed stearic acid accounts for the superhydrophobicity. Such a superhydrophobic Cu surface has an excellent nonsticking behavior and anticorrosion against electrolyte solution. It also keeps its superhydrophobic ability after a long-time ultrasonication or abrasion test. Our work may shed light on the selective etching of other metal surfaces to create designed dual-scale roughness for superhydrophobicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.